PREPRINT UCRL- 8 4 81 9

Lawrence Livermore Laboratory

Resource Access Control in a Network Operating System

James E. Donnelley
John G. Fletcher

CIRCULATION COPY
April 25, 1980 | SU,B;E% OTowgggéq‘LL

ACM Pacific 1980, San Francisco, CA, November 12-14, 1980

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made

before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.

//////
7
Y

ST |
TR 11

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising
or product endorsement purposes.

Resource Access Control in a
Network Operating System

by J.E. Donnelley
and
J.G. Fletcher

Lawrence Livermore Laboratory

Computer systems being incorporated into mature
support networks are facing a substantial protocol
implementation effort in granting controlled access
to their resources and in obtaining access to
network-supplied resources. This protocol
implementation effort can be signifigantly reduced by
using resource sharing protocols that are independent
of specific resource semantics.

A capability-passing model for distributed access
control is described and several capability
management protocols are discussed. Highlights of
the discussion include:

the inaI?énable right.to bass capabilities,
capabilify theft throughIAata theft and reflection,
cepability management by public key encryption,

a capability passing structure, and

resource sharing by humans using an 1ntégrat10n of

network dxrectorles

Keywords and pﬁrasesf d}éfributed, héiwork operating
system, communication protocol, resource sharing,

capability, public key, encryptlon, access control,
direectory.

[a.p)

]

<.,

UCs
1. Introduction

Trhe fandemen:al task of a computer operating system (0S) is
resource management and control. In the case of stand—-alone
single—computer operating systems the assumption is made that its
respurces are crealed Irom direclly allached peripheral devices
(figure 1). In this type of system the operating system is lord and
master of its realm and is able to dole out resource access in any way
it chooses. The absolute power wielded by these stand—alone systems has
given rise to numerous forms of resource access control. These include:
user indexes and groups, directories, passwords, access control lists,
capability lists, and others [Bob72, RiT74, Org?72, Wul74].

In recent years the distributed nature of many modern computing
facilities has created a need for distributed operating systems adequate
to manage access control for their distributed resources. The component
operating system for a single machine in a distributed computing
facility (figure 2) generally finds itself more of a demigod than did
its omnipotent stand-alone ancestors. These component sysiems do
control their directly attached peripherals but often must share access
to most resources with other computers on a communication network
(figure 3). The resource sharing mechanisms possible for such component
systems are considerably more restricted than those for stand-alone
systems. : .

An example of this situation for component operating systems was
that faced when a Cray—1 processor was recently added to the Octopus
network [Fle73, Wat78] at the Lawrence Livermore Laboratory. When this
processor was attached to the network, its only peripherals were enough
disks for temporary file storage and a high speed network interface
(tigure 2)[Chr77?,-DoY76]. The task of the component 0S for such a
machine is to make its processing and disk storage resources available
to the neiwork and to allow its processes convenient access to resources
available on the network. The design for such an 0S becomes in large
part the design of a communication protocol: a protocol for distributed
access control. We will explore some of the issues and methods involved
in the design of such distributed access protocols.

2. Comminication Primitives

Tn order to define an access control protocol it is necessary to //fi:
;specify-the communication primitives that it will be built upon. Tt is
important to require as little as possible of these primitives in order

to allow the defined protocol to be utilized with as wide a variety of
communication facilities as possible.

The primitives that we utilize here consist of a simple bit string
or "bucket of bits" communication facility. We assume that the active
elements capable of communicating (hereafter referred to as processes)
are able to send end receive bit strings (messages) of unlimited length
and that the messages can be addressed to and from an unlimited supply
of network addresses. We assume that the issues faced by typical
end~to-end and lower level protocols (error detection and correction,
flow and congestion control, routing and identification, etc.) are
properly hundled by Lhe communicalion facilily [Fle79, FIW78, Pos80,
Wat79].

3. Defining the Distributed Resource Sharing Problem

The essence pf ihe resource-sharing problem can be characterized by
considering the three processes diagrammed in figure 4, a resource
service and two resource-using processes. The problem can be divided
into lwo parls: resource—access validalion by Lhe service process and
resource—access passing between pairs of using processes.

For our discussion it will be convenient to have a single term to
denote resource access. We will use the term capability [DeV656, Don78,
Eng72, Fab74, Lan75, LaS76, Nee79, Wul74]. We say that a process has a
capability to a resource if it has been authorized to access the
resource.

This use of the term capability is a generalization of the way it
is often used in the discussion of capability list (C-list) operating
systems [Lan75, LaS76, Wul74]. In €-list systems capabilities do
authorize resource access, but the term is generally restricted to refer
to a specific form of capability implementation as some type of pointer
that is protected by the kernel of a stand-alone 0S. In such systems
all cepability passing and validation (in this restricted sense) is
mediated by the system kernel. This centralized approach to access
control unfortunately does not extend well into a distributed
environment [Don786]. :

OQur purpose here is to explore the types of protocols suitable for
capability authorization and passing in a network operating system. Our
protocols must allow serving processes to give out capabilities to
potential users in such a way that: '

a. The capabilities can be validated when used as authorization for
service requests, and '

b. The capabilities can be communicated or passed belween any processes
that can communicate data.

3.1 The Inalienable Right to Pass Capabilities

The requirement of capability passing (b above) often provokes some
controversy. It is sometimes argued that allowing a process with an
anthorized capability to pass its authorization to anolher process is
not always desirable. Indeed, a number of operating systems go to a
great deal of effort to offer features that restrict capability passing.

Since the right to access any resource must originate from within
the domain of the serving process, all capabilities must be passed at
least once {namely from the service process to a using process) to be of
any use at all. To handle this "first-pass” situation, some operating
systems have used the expedient of a "pass—once” capability [Bas7?7].
Since a stand-alone 0S can arrange to monitor capability pointer
passing, it cen mark “pass—once” capabilities as unpassable after they
have once been passed from their service process to a user. In addition
to being somewhat awkward, however, these attempils to restrict
capability passing have the disadvantage that they can never really
work. They can only work in Lhe limiled sense ol lhe lerm capabilily
discussed above (a pointer protected by a stand-alone 0S), but not in

-3—

(93]

the more functxonal sense (that we have adopted) of granting the right
to access a resource.

To see the difficulty of restricting capability passing we need
only consider the processes A, B, and S pictured in figure 4. Suppose
lhal A hes a capsbilily lo a resource serviced by S. Also suppose Lhal
A can communicate with B (if not, then A clearly cannot pass
capabilities or anything else to B; so no special capability passing
restriction is necessary). If the mechanism used to pass direct access
to a resource from A to B has been denied by a monitoring OS kernel, A
can still give B the right to (indirectly) access the resource. A can
simply have B send all its service requests to A for forwarding to S. A
will also have to return the results of such requests to B.

In some cases this sort of indirect capability passing is a useful
mechanism. For example in cases where A wishes to monitor B’s accesses
to the resource or where A wishes to be able to cut off B’s access at a
later time. In many other cases, however, the inability to pass direct

access to a resource simply places an unnecessary additional
communication burden on the passing process.

Since it is our intent to make the capability management protocols
we consider as convenient as possible and since it is not possible to
truely stop capability passing between processes able to communicate, we
will only consider protocols that support the passing of direct resource
access. Indirect capsbility passing (as above) is always available to
any process that chooses to use it in lieu of direct capability
comnunication.

4. Tools Available for Capability Validation

In choosing a capability management protocol it is convenient to
center attention first on the validation mechanisms available. The
capability passing mechanisms seem to follow naturally from the
validation techniques chosen.

When a service process receives a request for resource access, it
receives two pieces of information that can be used for capability
validation:

i) the message data (the string of bits), and
ii) the address of the sender (remember we assume that our
communication primitives validly identify the addresses of sending
processes).
These two pieces of information naturally give rise to two basic
approaches for capability validation.
4.1. Data Authorization
A service process using data authorization gives some secret
informaslion lo processes aulhorized lo access Lhe resource. Il hopes
that other unauthorized processes will not be able to guess or

surepticiously obtain the secret information.

—4

¢l

8.0
(4]
)

4.1.1. Password Protected Capabilities

A simple form of data authorization is a pure password protocol.
To create a password-protected capability, a service process creales a
block of data containing the resource identification’ and a secret
password Lo aulhorize resource access. To validale an access request
authorized by a password-protected capability, the service process need
only compare the password in the received capability data block with the
, valid authorizing password. The authorizing password can either be
choosen at random and stored with the resource or can be computed from
the resource identification by a secret algorithm known only to the
server {(e.g., encrypted with a secret key).

4.1.2 Communicating Tassword-Protected Capabilities

Password-protected capabilities are the easiest type of all to
communicate. To pass the right to access a password-protected
capability from one process to another, it suffices Lo pass the
capability data block (including its password) in a message.

-4.1.3 The Data Theft Problem for Capabilities

The ease of communicating password-protected capabilities also
gives rise to their most signifigant problem. A process with a
password-protected capability in its domain (e.g. in its memory space)
wust be careful not to reveal the secret password. Alihough the domains
of processes are generally protected from information theft, password-
protected capabilities make some of a process’s information particularly
sensitive. For example, a resource such as a file or directory may
remain in existence long after the process and its memory are no longer
used.

The problem of information theft is especially serious in light of
typical progremming practices. It is quite common when debugging
programs to output blocks of memory to examine them for program
inconsistencies. If such memory output contains password-protected
capabilities to sensitive resources, then it must be carefully protected
(e.g. not taken to a consultant for analysis).

4.2 Address Authorization

A service process using address authorization utilizes the address
of the requesting process (as supplied by the communication facility)} in
determining whether or not to allow a resource request.

* Resource identification is generally divided into a portion
containing the address of the service-process and some service—process
dependent additional information identifying a specific resource to the
server. Since we are concerned here predominately with authorization
and validalion, we will nol furlher discuss resource idenlificalion.
Additional discussion of identification issues can be found in [FI¥80,
Wat80].

—5—

et sttt

4.2.1 Access List Protected Capabilities

The conceptually simpliest form of address authorization is an
access list protocol. To create an access—list-validated capability, a
service process creates and maintains a list of addresses that are
allowed Lo access Lhe resource. Service processes [or access—lisl-—
protected capabilities need only pass resource identification
information to authorized using processes. This information is not used
for authorization, however. To validate an access request authorized by
_ an access—list-protected capability, the service process checks 1o see
if the sender’s address is in the access list for the identified
resource.

4.2.2 Communicating Access~List-Protected Capabilities

Communicating acecess—list-protected capabilities is a good deal
more difficult than communicating password-protected capabilities. The
basic difficulty is that the service process must update its access list
every time a capability is passed from one using process to another. To
do this the service process must be notified that the capability
transfer is taking place. ’

4.2.3 The Reflection Problem for Capabilities

At first glence it might appear that the passing of an access-list-
protected capability could be accomplished in two steps:

S1. Request the service process to add the address of the process
to receive the capability to the access list, and

S2. Send the resource identification to the receiving process.

Unfortunately, the above steps do not quite suffice for secure
capability passing. The problem that exists is best illustrated by an
example that is also useful in characterizing similar problems in other
capability passing protocols.

The essence of the capability reflection problem is the situation
that can arise if a process, D, can be duped into falsely believing that
it received a capability from another process, B. If D can then be
called upon to send {(reflect) the capability back to B, B may receive an
unauthorized capability.

To illusirate the capability reflection problem for the two-step
access list protocol above, consider the directory service D depicted in
tfigure 5. The function of this directory server is storage and
retreival of capabilities. It allows processes to store capabilities in
directories so that they may later be retrieved and used by any process
with a capebility to the directory. A directory server allows processes
to store and share capabilities in a manner analagous to the way a file
server allows storage and sharing of information.

We suppose for our example that process A has the only capability
lo an access—lisl-prolecled resource serviced by S. We also suppose
that A has a capability to directory D, and that B has a capability to
Dg (but not to DA). Any authorization protocol used for the

-5

)

Lo

capabilities to the directories themselves will suffice. For example,
the reader might consider them protected by passwords.

Now consider what must happen if A is to store its capability in
D,. Following steps 51 and 32 above, it first requests S to add D to
lhe access lisl for the resource (1). A ihen sends Lhe resource
identification to D and requests that the capability be stored in D,

(2).

If at a later time some other process with access to D, requests
retreival of the stored capability, D must go through steps S1 and SR to
satisfy the request., That is it must have S add the retreiving process

to the resource access list and then must return the resource
identification to the retreiving process.

The capability reflection problem appears when we consider what
happens if process B sends the resource identification (which A has not
kept secret because it trusts the access list mechanism) to D and
requests that its capability be stored in Dy (3). Of course B cannot
succeed if it requests 3 to add D to the resource access list (since B
itself is not on the list), but no matter. As we have seen, D is
already on the list thanks to A. At this point the situation appears to
D as if B were authorized to access the resource. All B need do is ask
D to retreive the capability from its directory (4) and it will have
duped D into placing it on the access list without proper authorization.
We will see a similar reflection problem appear in conjuction with data
theft when we consider public key encryption protection of capabilities.

4.2.4 Protecting from Capability Reflection

To supply an access—list-based capability management protocol that
is safe from the reflection problem, we need to add something to the
simple two-step protocol given above. One method of bolstering the
two-step protocol requires all capabilities to be received from the
-resource service process. Using this protocol, a process sending a
capability to another just notifies the receiver to expect the actual
capability from the resource service process. "The sender also requests
the server to add the receiver to the resource access list AND to send
the capability identification to the receiver on the sender’s behalf.
The fact that the process receiving the capability actually receives the
resource identification from the service process along with the address
of the sending process guarantees that the sender was authorized to
access the resource.

This access—list protocol is somewhat awkward and requires a
Bignifigant amount of message traffic. An additional defect is its
requirement that the resource service process be available for
capability transfers between any two processes at any time. The
access-list protocol also requires servers to maintain access—lists
which must be stored, checked for overflow, etc.

The advantage of the access-list protocol over password protection
is its freedom from the data theft problem. The only information that
can be stolen from a process’s memory space concerning an access—list-
prolecled capubilily is ils resources’ idenlilicalions. Since a
resource identification is not sufficient authorization for resource
access or capability passing, data theft is not a threat.

-7

4.3 Capability Authorization Using Both Data and
Address Authorization

There are a number of methods for combining data and address

authorization in a capability management protocol. Two examples are now
discussed.

4.3.1 Encrypted-Address—Protected Capabilities

This protocol is able to obtain the data theft protection of access
lists without the need to manage the lists. In this scheme the resource
service process grants a capability to a using process by encrypting the
authorized user’s address and the resource identification into a block
of data that is sent to the authorized process (the portion of the data
block containing the server’s address is not encrypted). To validate
resource access using this scheme the service process decrypts the data
blocks sent in to authorize resource access and compares the decrypted
address from the data block with the address of the sender returned by
the communication facility. Only if the addresses match will the sender
be suthorized access to the resource identified in the decrypted data
block.

4.3.2 Communicating Encrypted—Address Capabilities

_ To cormunicate asn encrypted—address capability it must be passed to
the receiver through the service process as with access—lisi-protected
capabilities. With an encrypted—address protected capability, however,
the server need not maintain an access list. Instead, it decrypts any
capabilities to be passed, and, if the ceapability is valid, sends a
capability to the receiver that is reencrypted with the receiver’s
address. :

Encrypted-address-protected capabilities share with
password-protected capabilities the hazard (however remote) that a
capability could be guessed. As with access-list-protected
capabilities, they require the cooperation of the service process for
all capability transfers and are somewhat awkward for the receiver. 1In
addition they require the overhead of the decryption and encryption
operations when being passed.

The major advantage of encrypted—address capabilities is that they
offer essentially the same resistence to the data theft problem as
access—list—protected capabilities, but do not require the management of
access lists by the service processes.

4.3.3 Public—Key-Encryption-Protected Capabilities

This last exsmple authorization method provides the safety from
data theft of access-list protection, but does not require access-list
maintenance nor message exchanges with the service process for
communication of capabilities.

This melhod depends for ils operalion on Lhe exislence of a
practical public key encryption mechanism. We assume that every process
A has a secret decryption algorithm which we will denote by A, (, = up

~8—

[€e
-

into the bright light of day). We also assume that ALL processes are
able to encrypt data to be sent to any process A with a public
encryption algorithm that we will denote by A, (= down into the dark
world of encryption). We therefore have that for any process A and data
d, AﬁA d = d. Flnally, we assume that A, and A, commute, i.e. A A d =

AA,d =d. The reader is relerred Lo [Lem79] for furlher dxbcubblon of
such algorithms.

The basic idea of public-key-encryption protection is similar to
that of encrypted—address protection. While a capability resides in ths
domain of_ a process, A, it is protected from theft by encryption. In
this case instead of having A’s address encrypted in the capability., a
password-protected capability to the resourcec, S ¢, encrypted with the
public encryption algorithm of A, A ;S c. Because of the secrecy of AL,
no process able to steal the encrypted capability will be able to use
it. In order to avoid the problems associated with distributing the
public keys [PoK79] the public key for the server is kept in clear text
in the data block of every capability. Also, ¢ must have enough
redundancy so that a random data block will not be interpreted as a
valid (random) capability.

4.3.4 Communicating Public Key Encrypted Capabilities

It might appear that for communicating a public key encrypted
capability from A to B it would suffice for A to transform the stored
A,pc with BjA . This would remove A’s protection and reprotect it for
B. Unfortunately, however, this simple form of capability communication
is subject to a hazard of data theft and reflection. If a process could
steal a capability from A’s domain, it could reflect it off of A (send
it to A and ask for it back as in the directory example given
previously) and gain unauthorized access. Similarly, if a process could
steal the capability from A after it had been readjed for transfer o B,
it could be reflected off of B to obtain unauthorized access.

These difficulties can be remedied by performing the following
transformations for sending and receiving capabilities. For A sending a
capability to B, it uses the transformation B‘A*Aﬁ. The first A,
removes A’s protection, the second A, effectively signs the capability
as coming from A, and the final Bo protects it so that it cannot be
stolen from B°s domain when it arrives.

For B receiving a capability from A, it uses the transformation
B,AB, The first B, undoes the protection that A put on for B, the
mlddle A unsigns the capability, and the final B, protects the
capab111ty for residence in B’s domain. Figure 6 follows the
transformations performed as a capability for a resource identified by c
passes from a server S to A, then to B, and finally back to S for
authorization.

An interesting property of this protocol is the fact that a process
with a capability can safely "look” at the clear text identification of
the resource. For example, in figure 8 process A can apply S A, to the
A,S c that it holds in memory to yield ¢. There is no danger from
hav1ng the clear text c stolen (at least in terms of protecting the
resource—access of ¢) because no process will be able lo produce lhe S c
that is required for validation by S. Another interesting and
convenient fact is that while the capability is in the servers domain

-9

its normal storage form is clear text. The server’s "look"
transformation is the identity transformation.

An important requirement of this protocol is that its
transformations (rece1v1ng, looking, and sendlng) be indivisible. That
is, inlermediule resulls musl nol appear in lhe memory of processes
where they might be stolen. For example, if the transformation
B,A A (A,S,c) were to yield the intermediate result S,c in memory after
the first A, the integrity of the mechanism would be breached. S,c is
essentially a password—-protected capability in that any process able to
steal it, X, can transform it into X ;S .¢ and then use it or pass it.

The protection of the private encryption key and the intermediate
results can be achived in several ways. For example in a
multiprocessing OS5 component the transformations can be performed by the
0S kernel in responce to a virtual user instruction (only the kernel
knows the process’s private decryption key). In a smaller single domain
system (e.g. a microprocessor system) it might prove effective to have
the transformations performed in a hardware device that alone knows the
system’s private decryption key.

It has been pointed out elsewhere that in many situations the
problem of distributing public encryption keys is as severe as that of
distributing secret keys [PoK79]. The difficulty comes from trying to
match a public key with some previously identified entity. For example,
is this public key really that of the person with whom I intent to
correspond? Fortunately this difficulty is not present in the
capability protection mechanism discussed here since the public keys are
distributed in the capability data blocks. It is true that a server (or
anyone else) could endanger a trusting user by paSSIng out a capability
with an incorrect public key or other invalid identification
information. This is simply an instance of the well known Trojan Horse
problem, however, and is necessarily present in the best of capability
management mechanisms.

This public-key-validation protocol has the strength from data
theft of the access—list and encrypted—address schemes, but requires no
access—list management or extraneous message passing. Its major
weakness is the overhead involved in the iransformations required. It
depends, of course, on the existence of a suitable public key encryption
algorithm.

It should be mentioned here that there are capability protection
protocols that protect from data theft without message traffic but do
not depend on public key encryption. The only such protocels known to
the authors [Nes80], however, involve some additional complications for
key distribution and and management that are not relevant here.

7. A Capability Passing Structure

We have explored four examples of capebility passing protocols.
Each seems to have strengths and weaknesses. From the viewpoint of a
process wishing to communicate capabilities this is a rather negative
result. It appears that there is little likelihood of finding a best
cupaubilily passing prolocol lhal can be used as a slandard. There is a
great deal of commonality in these example protocols, however. By

-10-

—

exploiting this commonality it may be possible to at least define a
copmon capability passing structure. '

All of our example capability passing protocols can be divided into
three analagous parts: the communication proper, the sending
Lransformalion, snd lhe receiving lransformalion. The communicalion
proper is simply a matter of communicating the capability data block
including the server’s network address and the server dependent

information. The sending and receiving transformations break down as
pictured in table 1.

Table 1

Sending and Receiving Transformations for
Example Capability Passing Protococls

Example Sending Receiving
a.A Password None None
b. Access List Request Server to Receive identification
add to list and from server.

forward ident.

c. Encrypted Address Request server to Receive reencrypted

reencrypt and capability from
forward. server.
d. Public Key A « B B,A A, B‘A¢B*

From the table it is apparent that examples b and ¢ are identical
from the perspective of the communicating processes. In both cases the
sender also sends the capability to the server and in both cases the
receiver receives the capability confirmation from the server.

To integrate these example protocols into a common structure we can
supply each capability passing process with library routines for the
sending and receiving transformations that can handle the three distinct
forms. The rontine “SendTransform” is passed the stored capabiliiy data
block and the address to which the capability is to be sent. It returns
a capability data block suitable for direct transfer. The capability
data block must always keep a description of the form of protection that
it uses in clear text. This protection form description allows the
transformation routines to determine which transformation to perform.

The routine "ReceiveTransform” is passed the received capability
data block and the address that the block was received from. It returns
lhe Lransformed capabilily dala block in a form suilable [or sloring in
the domain of the receiving process.

-1

“

Tt
This common structure highlights the practical difficulties with
the access list and encrypted-address protocols. In general the
receiving transformation for this capabilijtly passing form must wait for

a message from the server before being able to store the transformed
capability.

8. Integration of Network Directories

It is a little difficult to fit the capabiliiy management protocols
into perspective without an example of their use. Accordingly we give
the example ¢f the directory sgervice discussed briefly earlier., This
example illustrates the the type of network-wide name space needed for
humans to share capabilities effectively.

The basic idea of the directory service is to store capabilities by

name (figure 5). The essential operations on a directory resource are
store, retrieve, delete, and list:

Table 2

Primitive Directory Operations

Sends directory

capability end Directory server

Operation opcode and returns

a. Store the capability to store 0K or error
and the name to store {(e.g. name conflict).
it under.

b. Retreive the neme to retreive the capability

' retreived
c. Delete the name to delete OK or error
d. List ~nothing else— a list of stored

capability names

A capability to a directory is one type of capability that can be
stored in a directory. Directories therefore naturally form a general
directed graph (figure 7 and 9). Furthermore, since a capability to a
directory serviced by one server can be stored in a directory serviced
by another, the directory structures are trivially integrated (figure
7). The ability to integrate directories in this way is a consequence
of the fact that the directory servers share a common capability-passing
protocol.

8.1 Human Use of Directories

-12~

B7&¢

A natural way to introduce human beings into a resource sharing
structure managed by directories is to give each user a private
directory in which to store capabiljties. Since many of the resources
stored in this private directory will themselves be directories, the
private directory becomes the starting point or root from which the
olher resources belonging lo a user can be reached. Each user can be
given a password—-protected capability to this root directory to memorize
and later regurgitate when "logging in."

If each user is also given some type of account capability to
authorize. creation of new resources’ then they can get started building
a resource structure for their private use. Directories can be created
for storing related resources and saved in the root directory for future
reference. Files, processes, or other resources can be stored in this
created directory structure.

8.2 Directory Manipulation Utilities
Typically users manipulate their directory structures with a
general purpose utility that performs operations such as:
a. Duplicate Path, to Path,
b. Delete Path,
c. Create Directory Path,
d. Destroy Directory Path,
Here the Paths are lists of names, Name, ,Name,, ..., Namep, ;;si,.-
For all the paths the utility starts with the user’s root directory and

scans down successive names as noted in figure B. The resulting
directory, Dir, and the last name, Name, are used by the operations as:

a. Duplicate — Retrieve Name, from Dir, and store it in Dir, as
Neme,, . '
h. DNelete — Name, from Dir,.

¢. Create — a directory serviced by a convenient directory server
snd store its capability in Dir, as Name,.

d. Destroy — Retrieve the capability Name, from Dir,. Assume that
it is a dirctory capability and have the server destroy it.
Also delete the now useless capability Name; from dir,.

* Discussion of network accounting mechanisms is beyond the scope of

Lhe presenl paper. Such mechanisms are being aclively invesligaled al
LLL. We expect to report the results of these investigations at a later
time.

—-13~

i

N

These interactive services are quite useful for manipulating a
directory structure. Unfortunately. however, if the directory
structures of two users are disjoint (neither contains a directory of
the other), these primitives cannot be used by the users to share
resources. Users can begin sharing with each other by communicating
cupubililies process Lo process, bul Lhis is somewhal awkward and

outside the scope of the services offered by the typical directory
manipulation utility.

8.3 Booistrapping Resource Sharing with Directories,
Give and Teke Directories

Once the directories of two users are linked, sharing of resources
may be possible using a directory manipulation utility as above. If the
user directory structures are linked appropriately, the initial linkage
can be used to bootstrap further more flexible sharing.

At LLL the Elephant Storage System [FIF75] (which never forgets
user directories) has for many years supported a general directed graph
directory structure to facilitate sharing of user resources. The
bootstrapping linkage used in this system is simple but powerful. It
provides two basic facilities:

i) Any user can give a capability to any other user, and
ii) Any user can make a capability available to all other users.

To supply i) each user is given a directory that others can use to
give him capabilities. A capability to store into this "Give" directory
is placed in a public directory under the user’s neme. A capability to
list and retreive capabilities from the public directory of "Give”
directories is also given to every user. By using the duplicate
operation described above a user can give a capability to amy other user
if they are linked in this way.

To supply ii) each user is given a directory that he can put
capabilities into to allow others to take them. A capability to list
and retrieve from this “Take" dirctory is placed in a public directory
under the user’s name. A capability to list and retrieve capabilities
from the public directory of "Teke"” directories is also given to every
user.

Starting from this simple bootstrap linkage, users can apply the
directory operations described above to construct any type of shared
directory linkage desired. This allows humans to conveniently share
resources by using a network-wide naming structure built on top of the
capability passing protocol.

9. The Current State of the Protocols at LLL

The network systems division at LLL is currently in the process of
upgading the communication protocols for the Octopus Network [Fiwao] to
support a tightly coupled network network operating system [Don79]. A
mulliprocessing componenl operaling syslem is being implemenled lo
support these new protocols. The emulation of this component system
that is currently running uses only password-protected capabilities.

-1 4

[aN N
BN

We expect to continue running the early versions of the network
operating system using only password-protected capabilities (because of
their simplicity) until a need for protection from the data theft
problem arises. The current servers that distribute password-protected
capabilities encrypt the resource identification into the capability
dala block using a sollware implementalion of Lhe Nalional Bureau of
Standards (NBS) Data Encryption Standard (DES) [NBS77].

For many years now the Elephant Storage System has provided a
centralized directed graph directory structure for sharing user files
and directories at LLL. When we shift our network protocols over to the
capability passing structure described above we also expect to upgrade
the central directory structure to store these generalized capabilities.
As noted before this will automatically integrate it with the local
directory services on the component "worker" systems such as the Cray-1.
This integration will give both humans and processes at LLL the ability
to share the Octopus network resources quite flexibly.

10. Conclusions

Many of todays mature resource sharing computer networks require an
integrated network operating system to make effective use of their
facilities. The operating system’s task of controling access to its
shared resources is greatly simplified if it can control resource
sharing with protocols that are independent of the semantics of the many
resources available in such a network. We have discussed some of the
issues involved in the design of such protocols and have explored the
strengths and weaknesses of a number of examples.

Some of the resource—access management mechanisms we have discussed
are not new. Certainly the use of passwords to protect login access to
time sharing systems must by now be considered an ancient tradition in
the lore of computer science. Schemes similar to the access—list
protection protocol can be found in the venerable ARPA network initial
connection and file transfer protocols [ARP78] and in many more modern
systems. However, the resource independent sharing protocols developed
here go far beyond the protocols currently popular in distributed
systems. As we illustrated with the integrated network directory
example, there are many distributed system problems now considered
difficult that become trivial when considered in the context of a common
resource—access management protocol.

The main thrust of this paper has been the suggestion that access
control protocols can and should be studied and implemented apart from
the semantics of specific resources. The discussion has been carried
out using the somewhat methaphorical terminology of communicating or
passing capabilities that has proven effective in use at LLL and
elsewhere.

It has become apparent to us at LLL thgt the success of our network
operating system implementation will depend to a large extent on the
success of our distributed access control protocol(s). We expect such
protocols to become a more important part of future efforts in
distributed system design.

11. Acknowledgements

o

One historical line of development for the capability sharing
protocols we have discussed can be traced from [DeV66] through
experimental C-list operating systems at MIT and at LLL. The LLL
system, RATS [Lan75], was implemented by Charles Landau with the
assistance of one of the suthors (Donnelley). Another historical line
of developmenl can be lraced Lo some early direclory ideas from Mullics
[Org72] that were built into the Elephant Storage System at LLL [F1F75]
by Garrett Boer with the assistance of one of the authors (Fletcher).

The suthors gratefully acknowledge the contributions from
collaboration with their confederates in network operating system design
at LLL: -Dick Watson, Lance Sloan, Bob Crallee, Pete DuBois, Chuck
Athey, Donna Mecozzi, and Jim Minton.

12. References

[ARP?B] ARPAnet Protocol Haondbook, Network Information Center, SRI
International, Menlo Park, Calif. 1978.

(BaS??] Baskett, F., et. al., "Task Communication in Demos,"” Proc. of

the Sizth Symposium on Operaling System Principles, ACH, Purdue
University, 1977, pp. 23-31.

[Bob72] Bobrow,.D. G., “Tenex, A Paged Time Sharing System for the
PDP—-10," in Comm. ACM Vol. 156, No. 3 (March 1972), pp. 135-143.

[Chr77] Christensen, G. B., "Hyperchannel Data Trunk Contention,” in
Proc. 27? Conf. on Local Computer Networks, 1977, University of
Minnesota, Minneapolis.

[Dev66] Dennis J. B. and E. C. Van Horn, "Programming Semantics for
Multiprogrammed Computations,” Comm. ACM Vol. 9, No. 3 (March
1966), pp. 143-155.

[Don76] Donnelley, J. E., "A Distributed Capability Computing System,”
' Proc. of the Third I[nternational Conference on Computer
Communication, ICCC, Toronto, Ontario (Aug. 1977), pp. 432-440.

[Don79] Donnelley, J. E., "Components of a Network Operating System,”
in Prac. 4th Conf. on Local Computer Networks, TEEE 79 CH

1446-48, (Oct. 1979), pp. 1-12 (to appear in Computer Networks
in 1980).

[DoY¥76] Donnelley, J. E. and J. Yeh, "Interaction Between Protocol
Levels in a CSMA Broadcast Network,” in Computer Netfworks
Vol. 3, North Holland, 1979, pp. 9-R3.

[Eng72] England, D. M., "Architectural features of system 250," in
Infotech state of the art report 14: operating systems, 1872,
Infotech International Ltd., Maidenhead, Berkshire, England,
pp. 395-428.

[Fab74] Fabry, R. S., "Capability Based Addressing,” Comm. ACM
Vol. 17, No. 7 (July 1974), pp. 403-412.

—16—

[Fle73]

[Fle79]

[Fle80]

[FIF75] .

[F1W78]

[F1waa]

[Lan75]

[Las78]

[Lem?9]
[NBS77]

[Nee79]

[Nesg0]
[org?2]

[PoK79]

[Pas80]

[RiT74]

tio

Fletcher, J. G.. “The Octopus Computer Network." 1nADatmnatzon
Vol. 19, No. 4 (Aprll 1973), pp. 58-83.

Fletcher, J. G., "Serial Link Protocol Design: A Critique of
the X.2b6 Standard, Level 2," Lawrence Livermore Laboraiory
Reporl UCRL-83604, Oclober 1979.

Fletcher, J. G. and R. W. Watson, "Service Support in a Neiwork
Operating System,"” in COMPCON “80 Conf., IEEF, San Francisco,
Calif., March 1980.

Fletcher, J. G., et, al., "Computer Storage Structure and
utilization at a Large Scientific Laboratory,” in Proc. [FEE
Vol. 63, No. B (Aug. 1975), pp. 1104-1113.

Fleicher, J. G. and R. W. Watson, '"Mechanisms for a Reliable
Timer-~Based Protocol,” Computer Networks No. 4/5

(Sept./Oct. 1978), pp. R71~290. Also in Proc. Computer Network
Protocols Symposiuwm, Liege, Belgium (Feb. 1978), p. C5-1/C5-17.

Fletcher J. G. snd R. W. Watson, "Service Support in a Network
Operating System,” in COMPCON ‘80 Conf., IEEE, San Francisco,
Calif., March 1980.

Landau, C. R., The RATS Operating Systtem, Lawrence Livermore
Leboratory Report UCRL-77378 (1975).

Lampson, B. W. and H. Sturges, "Reflections on an Operating

System Design," Comm. ACM Vol. 19, No. 5 (May 1976},
pp. 261-265.

Lempel, A., “Cryptology in Transition,” Computing Surveys, ACH
Vol. 11, No. 4 (Dec. 1979), pp. 285-303.

National Bureau of Standards, Federal information processing
standards, Publ. 46.

Needham, R. M., "Adding Capabilities Access to Conventional
File Servxces," ACM Operating Systems Review, Vol. 13, No. 1
(Jan. 1979), pp. 3-4.

Nessett, T., "A Preliminary Reveiw of Three Secure Capabiliiy
Passing Mechanisms,” private communication.

Organick, E. 1., The Multics System: An Ezamination of I[ts
Structure, Mit Press, Cambridge, Mass. (1972).

Popek, J. G. and C. 8. Kline, "Encryption and Secure Computler
Networks,” Computer Surveys, ACM Vol. 11, No. 4 (Dec. 1979},
pp. 331-356.

Postel, J. B., "DoD Standard Internet and Transmission Contirol
Protocol Specification,” IEN 128, 129 (Jan. 1980), Available
through the Defense Advanced Research Project Agency, IPTO,
Arlington, Va.

Ritchie, D. M. and XK. Thompson, "The Unix Time Sharing System,”
in Comm. ACM Vol. 17, No. 7 (July 1974), pp. 365-375.

—17-

-

[Wat78]

[Wat79]

[Wat80]

[Wul74]

Watson, R. W., "The LLL Octopus Network: Some Lessons and
Future Directions,” in Prec. Third USA-Japan Computer)
Conference, San Francisco, Calif. (Oct. 1978), pp. 12-21.

Watson, R. W., Delta—t Protocol Specifications, Lawrence
Livermore Laboralory Reporl UCRL-52881, Nov. 1979.

Watson, R. W., "Naming in Distributed Systems,” to appear in
Distributed Systems, an Advanced Course, Berlin/Heidelberg/New
York: Springer—Verlag, 1980.

i_ﬁ;lf W. A, et. al., "Hydra: the Kernel of a Multiprocessor
System,” in Comm. ACM Vol. 17, No. 6 (June 1974), pp. 337-345.

Notice
This computer code material was prepered as an account of work
sponsored by the United States Government. Neither the United
States nor the United States Dopartment of Escegy, nor any of their
nplwﬂ-lﬂmofﬁdtw-mnbmmmwmwm

ploycns, makes sny warranty, oxp plied, or any logal
lhhlkyotmpoﬂsilitytmdn —1' or
of any i - dosed, or repre-

mththmwwldmwfnmpﬂntdy-uvndmhu

Reference to a company or product
name does not imply approval or
recommendation of the product by
the University of California or the
U.S. Department of Energy to the
exclusion of others that may be
suitable.

“Work performed under the auspices of the
U.S. Department of Energy by the Lawrence

Livermore Laboratory under contract number
W-7405-ENG-48.”

\

r‘.gurQ {

Network
I Storage
&7 &
Memory B Line
= Printer
Stand - alone CompPurer Syarem Malty “A;hj

0-»(¢ft\7 A’fﬁ“C‘('} Pe"‘/“e‘rql.‘-

F"J\-Lr_i 2

7’@ : ros
7"772 . S - N
. o C
272({4 v D,LS]QL Y \\K\}
> aitters
TTGI”"'STM 7D
. L)(S 3 anp D/A
. ,7228‘ JfOQI
3 Sl
S o et
é X A4 < @%
r'\;l{b -&
\ A G €5, .
nQ Lolﬂ v 2))26’
S Busses |F 2y
< A
Qo Anra
S N £Z N Y.
: d e 5 e Procdssons
Cray-l €e | e |
- N Y .
s 7 o
Loc a \ vj\ T mo?ﬂy
D.Jsks

/\\ E;.%m/((A'(h—:(,.\ﬁ(,ﬁ cc,__?,b,""‘j r“"/'a’.

Distributed
Message
\ System

"Local"

Processes

Re s ouvee s Guer G

S'la.r-r\J

\C‘MM\L’\:IQ*:GK Ne-h-w‘bw

"Remote"

Processes

(1L/8°A34) BBE-

Y

Fijuvz

(and 0,&3
J

Pa £¢in

Ea

»
y
-
d

“

D..‘ﬁ-‘Qh,ff_.‘ (l(’loqpe(Sl\c.r-‘n,‘) Ib"d‘)((’k‘

3lva

3NYN

1J3rens

39V d

"ON 3713

d1LON OSNIH3IINION3

VINYOZ1TIVD 30 ALISHIAINN - AHOLVIOBVYT JYOWHIAITT IDNIUMVT

P AGE

FILE NO.

N AME

DATE

LAWRENCE LIVERMORE LABORATORY - UNIVERSITY OF CALIFORNIA
ENGINEERING NOTE

SUBJECT

P-e.sa-.ute rJd

Non~e A \) ﬁ'.fcuuv P

((\Jl\b;’ ‘\‘l'y
The

Server

0

(Q(' f’(’ et On

Afbeefa.y

»

A R?JOUVF(’

Acce sre

L.-st

A

f?‘,(/:(e

m—

cerd pp-‘ﬁdrco
Cuneauathy oy,'}ej)

JSer '

Sielen

R(J cupel th

D:.C Cfbvr 6 [({

LS5 | Pesouve Id

/\}t:b(c,.\ f}:ﬁu«//(

LL-398 (REV.8/71)

P AGE

FILE NO.

N AME

DATE

LAWRENCE LIVERMORE LABORATORY - UNIVERSITY OF CALIFORNIA
ENGINEERING NOTE

SUBJECT

F;Ju.rf b

Q‘,(Sﬂc

6 £
Send:
<LL aﬂ .gﬂ‘
From A
ﬁeee;ue:_ RR
1'.\ Membby;

8&13} &

I,C(r'.v-,j Pu.U.{c —i«ey~ ﬁ, ote ¢ted (a/\as.'/..#fm;

LL-338 (REV.8/71)

P AGE

FILE NO.

N AME

DATE

LAWRENCE LIVERMORE LABORATORY - UNIYERSITY OF CALIFORNIA
ENGINEERING NOTE

SUBJECT

o

F;]urc

F;:e'\J‘ -

D:re;"'ﬂjr Se, e AV
A 05A

Syé*’ﬂ

L

ang -

-

n\c..vY :‘
Root

DsA

th?y—

(‘,\ w 1.t e £

0fQq id

Othe

Ca rc. s'\l :"‘:V‘(

fnieara*eA Netw ori

"
Cuery n“\’ Mhat's

Friends

D:rtc'hav7

I fn C\pr>’ -

o;recfar.‘(.{')

m,he O 4

Sy Jr€m @

JcMrI.'

ot he

(of‘ .. ".f;fl

Serwveov #’r

bpsé

/

NLA 1d

o ¢

(aftlfhyﬁl

-h'tle /Af*-'(u«j.r.’

/

LL-398 (REV.8/71)

P AGE

FILE NO.

N AME

DATE

LAWRENCE LIVERMORE LABORATORY - UNIVERSITY OF CALIFORNIA
ENGINEERING NOTE

SUBJECT

Div - Usger fzbo'f/'

Noame := Path o]’

For feanlndex 7 Sf«/ I U,/
Do
09(7'.'\-\
Dir.z= Redr.ieve (0.}/ 'Vc\me),'
Neme ;< Paik['fc.nlleTex];

End

‘S:A,(;/,OJ f(;.\ Loc/ 4’? /lA Th ¢

laths e -1

LL-398 (REY.8/71)

l DATE

Jo kn

)

4t
g *
B
: Y

Jed:

Duptlicate ProgNews to Pubtlake,John,NewNews

“Look at the

#

‘*1.?’ nI see.

.ﬂ"

; Pus cive
H“'.‘ '
R
Tak
Direchy € fos Take)
of Ted's
(W1
_ € Root
I n g
Dive ks Prog Mew s
44
JD‘U\ 4
Reet

Powll ¢

b:l'('l"bvy
. f

use v
6.

Dive chiieg

. to.tt-ve 1 R
: ‘ 30\\;\'(
* ko.f
Ry - € Jonn
X | Y |
WMew D¢ w s Condeass 2RO £git
- ;9 ?__;______i j -
’ . rn.m.. .)
30\-\‘! G-f+l Jonw's
Takeé Giue
The Give a;q.»} Toaxe 0"l¢t+» r, Boo‘f_rf, &P

“NewNews *

_dohn: ~ Display Gé Sfts ,}thN s

"The changeover hasn’t been announced yet."”

that I just gave you."

¥Duplzca.je EdttCode to.Broad@ast Edit

vf

- b . "Try it nd@

R‘m1. Pu.bltcTa.ke John Edit

"That seems to do it.

<Test>

Thanks."

__}figure 9 illustrates the following give and take examples:

Jeﬁ”’ "Why doesn“t Edit use the new error code standard’”

“You must not have seen the latest pProgrammer ‘s news.’

1 hqye a new vefﬁiah pf Edit here, wait.”

s

Aoy

